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COMMENT 

Canonical and Feynman quantization in Riemannian spaces? 

G A Ringwood 
International Centre for Theoretical Solid State Physics, Departement Natuurkunde, 
Universitaire Instelling Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium 

Received 1 March 1976 

Abstract. A paper by Ben-Abraham and Lonke claims to resolve the ambiguity between the 
Shrijdinger equation found by canonical quantization and that found from the Feynman 
propagator. It is shown that this claim is ill founded. 

1. Introduction 

A paper by Cheng (1972) derives a result, originally claimed by Dewitt (1957), to the 
effect that the Shrodinger equation obtained from the Feynman propagator differs from 
that obtained through direct canonical quantization by a term R/6 ,  where R is the 
scalar curvature. The approach of both Cheng and Dewitt is to normalize the 
wavefunction by 

jdnqg’/211(r12 = 1. 

A subsequent publication by Ben-Abraham and Lmke (1973, to be referred to as 
BAL) claims that, if the wavefunction is normalized without the factor g1I2 and care is 
taken to ensure that all integrals are scalars, the two forms of the Shrodinger equation 
agree. 

At the risk of overburdening the literature, it is worthwhile to point out errors in 
BAL and to present the calculation correctly for the following two reasons: the normal 
coordinates used in BAL bring clarity and simplicity to the calculation; the normaliza- 
tion used by BAL is the more symmetrical. 

2. The canonical Shriidinger equation in n o d  coordinates 

The normalization used in BAL requires that the wavefunction is a tensor density of 
weight 1/2 and that the Shrodinger equation obtained from canonical quantization: 

contains the correct covariant Laplacian. The change to normal coordinates *qa with 
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origin at 9" is effected by the implicit transformation (Veblen 1952) 
0 

where 
at the origin the transformed connections satisfy 

is the Christoff el symbol. Normal coordinates are particularly useful because 

At the origin of the normal coordinate system the Laplacian becomes 

a21n*g 
a2 1 (2gapa*9aa*9s --* 4 g a p  * a * P * 

a 9 3 9  0 
This may be compared with the curvature scalar R at the origin 

The Shrodinger equation thus reduces to 

(Note that *+ does not denote complex conjugate. Since the wavefunction is a tensor 
density it transforms with the coordinates.) 

Formally integrating (2.1) so as to exponentiate the scalar Laplacian 

and inserting a delta function, the propagator can be seen to be 

a bi-half tensor density. 

3. From propagator to Shriidinger equation 

The small-time Feynman propagator from q at time - T to q at time zero is 
0 

~ ( 9 , 9 ;  -7 )  = (2mi7)-n/2g'/4 e x p ( i ~ ) g ' / ~  
0 0 

where S is the classical action 
r O  

The propagator clearly has the correct tensor symmetry. 
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The minimum of S is given by a geodesic path, along which L is a constant. In 
normal coordinates the geodesic is by design simple: 

* a  4 ( t )  = -*qat/7 

and so 

(This is the first mistake in BAL.) The infinitesimal evolution of the wavefunction is 
given by 

* ~ o )  = (2,riT)-n/2*g1/4 J d"*q exp(&*kp * q a* q P ) * g 1/4* +(-T). 

The function *g'/"+(-~) can be expanded in a Taylor series: 

(3.1) 
0 0 

(This is the second departure from BAL where it is claimed that *g1/4 is a constant. 
Only the first derivative of g is zero. The Taylor expansion of any function of *q may 
always be made; the derivatives are not covariant as claimed in BAL,. Dowker (1974) 
gives the correct covariant expansion of a scalar. Apart from the fact that Dowker uses 
the same normalization as Cheng the method employed here is the 'more efficient 
method' referred to by Dowker.) 

The range of integration of *qa is --CO to +-CO even if the variable runs over a finite 
interval of the real line, as for example S ' ,  the unit circle. This is to allow for classical 
paths which loop the circle infinitely many times. Using the identity 

= (2,ri7)n'2(i7)m*g1'2 1 *g~*,a*z*gao3amd . . . * ~ - 2 , , - , ~ o ~ , , ,  g o u  

where the sum is over all permutations (T (integrals with odd numbers of *q are zero), 
the Shrodinger equation can be deduced from (3.1) by expanding the left-hand side in a 
Taylor series in T and equating the first coefficient of 7 :  

4. Condusion 

(3.2) 

The difference between the two equations (3.2) and (2.2) is a term (R/6)*#. Thus, 
contrary to the claim of BAL and as might have been expected, changing the 
normalization of the wavefunction does not alter anything. 
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